Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner.

نویسندگان

  • Hiroaki Hirata
  • Hitoshi Tatsumi
  • Masahiro Sokabe
چکیده

We examined the effects of mechanical forces on actin polymerization at focal adhesions (FAs). Actin polymerization at FAs was assessed by introducing fluorescence-labeled actin molecules into permeabilized fibroblasts cultured on fibronectin. When cell contractility was inhibited by the myosin-II inhibitor blebbistatin, actin polymerization at FAs was diminished, whereas alpha(5)beta(1) integrin remained accumulated at FAs. This suggests that actin polymerization at FAs depends on mechanical forces. To examine the action of mechanical forces more directly, the blebbistatin-treated cells were subjected to a sustained uniaxial stretch, which induced actin polymerization at FAs. These results demonstrate the novel role of mechanical forces in inducing actin polymerization at FAs. To reveal the molecular mechanism underlying the force-induced actin polymerization at FAs, we examined the distribution of zyxin, a postulated actin-regulatory protein. Actin-polymerizing activity was strong at zyxin-rich FAs. Accumulation of zyxin at FAs was diminished by blebbistatin, whereas uniaxial stretching of the cells induced zyxin accumulation. Displacing endogenous zyxin from FAs by expressing the FA-targeting region of zyxin decreased the force-induced actin polymerization at FAs. These results suggest that zyxin is involved in mechanical-force-dependent facilitation of actin polymerization at FAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement

Organs and tissues adapt to acute or chronic mechanical stress by remodeling their actin cytoskeletons. Cells that are stimulated by cyclic stretch or shear stress in vitro undergo bimodal cytoskeletal responses that include rapid reinforcement and gradual reorientation of actin stress fibers; however, the mechanism by which cells respond to mechanical cues has been obscure. We report that the ...

متن کامل

Zyxin is not colocalized with vasodilator-stimulated phosphoprotein (VASP) at lamellipodial tips and exhibits different dynamics to vinculin, paxillin, and VASP in focal adhesions.

Actin polymerization is accompanied by the formation of protein complexes that link extracellular signals to sites of actin assembly such as membrane ruffles and focal adhesions. One candidate recently implicated in these processes is the LIM domain protein zyxin, which can bind both Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the actin filament cross-linking protein alpha-act...

متن کامل

Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells.

The formation of focal adhesions that mediate alterations of cell shape and movement is controlled by a mechanochemical mechanism in which cytoskeletal tensional forces drive changes in molecular assembly; however, little is known about the molecular biophysical basis of this response. Here, we describe a method to measure the unbinding rate constant k(OFF) of individual GFP-labeled focal adhes...

متن کامل

Asymmetry in cytokinesis

ells exposed to repeated stretching along a unidirectional axis reinforce their actin stress fibers and reorient them to run perpendicular to the direction of strain. The two aspects of the response are regulated independently, report Yoshigi et al. (page 209). Numerous tissues are exposed to repeated mechanical strain and respond by C After stretching (bottom), re-localization of zyxin to stre...

متن کامل

Zyxin is involved in regulation of mechanotransduction in arteriole smooth muscle cells

Zyxin is a focal adhesion protein that has been implicated in the modulation of cell adhesion and motility, and is hypothesized to be a mechano-sensor in integrin-mediated responses to mechanical force. To test the functional role of zyxin in the mechanotransduction of microvascular smooth muscle cells (VSMC), we utilized atomic force microscopy (AFM) to apply localized pulling forces to VSMC t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 121 Pt 17  شماره 

صفحات  -

تاریخ انتشار 2008